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Problems

Problem 1.

What is the maximum number of points we can place on a plane in such a way
that for every subset of these points, we would be able to draw a rectangle
whose sides are parallel to the axes and every point in the subset is placed
inside the rectangle and others are placed outside of it.

(→ p.9)

Problem 2.

There are some players in a 70-day chess tournament. On each day exactly
one game will be played between two players (games can also be repeated).The
winner of each game, will not play for at most 8 days, and the loser of each
game will not play any other games for at least 9 days. Find the minimum
possible number of the participants of this tournament.

(→ p.9)

Problem 3.

There are 35 people in a group which are liars or truth-tellers. Liars always
tell lies and truth-tellers always tell the truth. For every i, the i-th person has
told us that the number of truth-tellers in this group is a divisor of 2i. Find
the number of possible values for the number of truth-tellers in this group.

(→ p.9)

Problem 4.

We have filled k cells of an 8 × 8 grid with distinct numbers in such a way
that the number in each square is greater than at most one filled square with
a common corner. Find the maximum possible value for k.

(→ p.9)
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Problem 5.

Find the number of ways that we can tile the figure below with dominoes.
A tiling is a placement of dominoes that covers all the squares of the board
perfectly (i.e. no overlaps, no diagonal placements, no protrusions off the
board).

Figure 1: The figure that should be tiled with dominoes.

(→ p.9)

Problem 6.

We have filled a 10× 10 grid with numbers +1 and −1. Find the maximum
amount of k such that there are exactly k rows with positive sum and exactly
k columns with negative sum.

(→ p.9)

Problem 7.

Some mathematicians have participated in a combinatorics competition. Each
mathematician can speak several languages. These mathematicians can speak
k languages in total. We know that every two mathematicians can talk to
each other directly or by a common language mediator among the mathe-
maticians. We also know that if any mathematician leaves this competition,
then this fact won’t be true anymore. Find the minimum possible amount
for k.

(→ p.9)
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Problem 8.

There are 1400 boys around a circle forming a regular 1400-gon. We know
that k of them are honest (always tell the truth) but we don’t know which
boys are honest, and the others are dishonest (sometimes tell the truth and
sometimes lie). One of them, Mr.X, has a diamond in his pocket whom we
want to find. We ask each one of the boys about the circular distance between
him and Mr.X. Find the smallest value for k such that we can certainly find
Mr.X having all their answers.

(→ p.9)

Problem 9.

Find the number of ways we can color the edges of a labeled complete graph
with 5 vertices (vertices are labeled with 1 to 5) with 3 colors in such a way
that every vertex has at least one edge with each of the 3 colors.

(→ p.9)

Problem 10.

A 12× 13 chessboard (12 rows and 13 columns) is tiled with 1× 3 mosaics in
such a way that there are exactly k vertical mosaics in every column. Find
the number of different possible answers for k. A tiling is a placement of
mosaics that covers all the squares of the board perfectly (i.e. no overlaps,
no diagonal placements, no protrusions off the board).

(→ p.9)
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Problem 11.

We have 100 vertices labeled from 1 to 100 around a circle as in the figure. As
you can see, beside the small arcs, there are some extra edges which connect
vertex 49 to some other vertices. Find the number of different paths from
point 1 to point 100 in this graph.

Figure 2: A cycle of length 100, the vertex labeled 49 is connected to vertices
44-48 and 50-53.

(→ p.9)

Problem 12.

There are 30 (not necessarily distinct) real numbers written on a board. We
know that no matter how we divide these numbers into 10 groups of size 3,
there would be at least 2 groups with equal sums. Find the maximum number
of distinct numbers on the board.

(→ p.9)

Problem 13.

Find the maximum number of 3-digit numbers with digits 1 to 4 in such a
way that for every two of them like a1a2a3 and b1b2b3 , there exists an index
i such that ai + bi = 5.

(→ p.9)
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Problem 14.
We call a lattice point (x, y) good if x, y are natural numbers, x ≤ 100 and
y ≤ 100. Find the minimum number of lines with gradient + 3

7 we should
draw in the way that each good point lies on at least one of these lines.

(→ p.9)

Problem 15.
Find the maximum number of bishops that we can place in an 8×8 chessboard
in such a way that each bishop threatens at most 3 other bishops.
(Every bishop threatens other pieces in diagonal directions, and if a piece is
placed between two bishops, the bishops will not threaten each other any-
more.)

(→ p.9)
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Answers

Problem Answer

1 4

2 11

3 2

4 32

5 324

6 8

7 5

8 702

9 900

10 1

11 21

12 9

13 8

14 979

15 40

9
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Problems

Problem 1.

In the lake, there are 23 stones arranged along a circle. There are 22 frogs
numbered 1, 2, . . . , 22 (each number appears once). Initially, each frog ran-
domly sits on a stone (several frogs might sit on the same stone). Every
minute, all frogs jump at the same time as follows: the frog number i jumps i
stones forward in the clockwise direction. (In particular, the frog number 22
jumps 1 stone in the counter-clockwise direction.) Prove that at some point,
at least 6 stones will be empty.

(→ p.17)

Problem 2.

We assume a truck as a 1× (k + 1) tile. Our parking is a (2k + 1)× (2k + 1)
table and there are t trucks parked in it. Some trucks are parked horizontally
and some trucks are parked vertically in the parking. The vertical trucks
can only move vertically (in their column) and the horizontal trucks can only
move horizontally (in their row). Another truck is willing to enter the parking
lot (it can only enter from somewhere on the boundary).

1. For 3k + 1 < t < 4k, prove that we can move other trucks forward or
backward in such a way that the new truck would be able to enter the
lot.

2. Prove that the statement is not necessarily true for t = 3k + 1.

(→ p.18)
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Problem 3.

There is an ant on every vertex of a unit cube. At the time zero, ants start
to move across the edges with the velocity of one unit per minute. If an ant
reaches a vertex, it alternatively turns right and left (for the first time it will
turn in a random direction). If two or more ants meet anywhere on the cube,
they die! We know an ant survives after three minutes. Prove that there
exists an ant that never dies!

(→ p.20)

Problem 4.

The path number of a graph is the minimum number of paths we need to
partition the vertices of a graph. Given a connected graph with the inde-
pendence number k > 1, what is the maximum possible value for the path
number in this graph? Find the answer in terms of k.

The independence number of a graph G is the maximum possible number k,
such that there exist k pairwise non-adjacent vertices in G.

(→ p.21)

Problem 5.

By a tile we mean a polyomino (i.e. a finite edge-connected set of cells in
the infinite grid). There are many ways to place a tile in the infinite table
(rotation is allowed but we cannot flip the tile). We call a tile T special if
we can place a permutation of the positive integers on all cells of the infinite
table in such a way that each number would be maximum between all the
numbers that tile covers in at most one placement of the tile.

1. Prove that each square is a special tile.

2. Prove that each non-square rectangle is not a special tile.

3. Prove that tile T is special if and only if it looks the same after 90◦

rotation.

(→ p.22)
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Problem 6.
Let P be a convex polygon and T be a triangle with vertices among the
vertices of P. By removing T from P, we end up with 0, 1, 2, or 3 smaller
polygons (possibly with shared vertices) which we call the effect of T. A
triangulation of P is a way of dissecting it into some triangles using some
non-intersecting diagonals. We call a triangulation of P beautiful, if for each
of its triangles, the effect of this triangle contains exactly one polygon with
an odd number of vertices. Prove that a triangulation of P is beautiful if and
only if we can remove some of its diagonals and end up with all regions as
quadrilaterals.

(→ p.25)

Problem 7.
In a group of 2021 people, 1400 of them are saboteurs. Sherlock wants to
find one saboteur. There are some missions that each needs exactly 3 people
to be done. A mission fails if at least one of the three participants in that
mission is a saboteur! In each round, Sherlock chooses 3 people, sends them
to a mission and sees whether it fails or not. What is the minimum number
of rounds he needs to accomplish his goal?

(→ p.27)
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Solutions

Problem 1.
In the lake, there are 23 stones arranged along a circle. There are 22 frogs
numbered 1, 2, . . . , 22 (each number appears once). Initially, each frog ran-
domly sits on a stone (several frogs might sit on the same stone). Every
minute, all frogs jump at the same time as follows: the frog number i jumps i
stones forward in the clockwise direction. (In particular, the frog number 22
jumps 1 stone in the counter-clockwise direction.) Prove that at some point,
at least 6 stones will be empty.

Proposed by Josef Tkadlec
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.
Consider the first 23 configurations. We say that two frogs collide (during
some minute) if they sit on the same stone. Since 23 is a prime, each two
frogs collide precisely once during the first 23 configurations. In total, this is(
22
2

)
= 231 collisions.

We will show that during that minute at least 6 stones are empty.

For the sake of contradiction, suppose that at least 23−6+1 = 18 stones have
a frog on them. For each such stone, name one of its frogs as the captain (of
that stone). Hence at most 22− 18 = 4 frogs ate non-captains. Then during
this minute:

• No two captains are colliding.

• Each of the at most 4 non-captains is colliding with 1 captain.

• There are at most
(
4
2

)
= 6 collisions among non-captains.

In total, this is at most 4 + 6 = 10 collision, a contradiction.
�
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Problem 2.
We assume a truck as a 1× (k + 1) tile. Our parking is a (2k + 1)× (2k + 1)
table and there are t trucks parked in it. Some trucks are parked horizontally
and some trucks are parked vertically in the parking. The vertical trucks
can only move vertically (in their column) and the horizontal trucks can only
move horizontally (in their row). Another truck is willing to enter the parking
lot (it can only enter from somewhere on the boundary).

1. For 3k + 1 < t < 4k, prove that we can move other trucks forward or
backward in such a way that the new truck would be able to enter the
lot.

2. Prove that the statement is not necessarily true for t = 3k + 1.

Proposed by ICO Problem Selection Committee
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.
Call the cell in the center of the table O. First we prove that if one of the
trucks contains O then there are at most 3k + 1 trucks. This fact concludes
the second part easily.

1. For the first part, no truck contains O since 3k+1 < t. Now we have four
types of trucks: D is the set of trucks horizontal and below O, similarly
we define the other types U ,L and R. We prove that the trucks in D
can be moved forward or backward to stand precisely below each other
(possibly with some gaps for the rows without truck). Similarly for U ,
L and R we do the same thing. Then we have four blocks of trucks and
we can easily move all of them clockwise or counterclockwise around O
to reach a position as in the figure, or its reflection.

Figure 3: Final position of the trucks
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Since t < 4k, there is a gap in some of the blocks which the new truck can
enter the table and park in it. So if l doesn’t intersect the row which
d is placed inside, our solution works sufficiently otherwise d doesn’t
intersect the column which d is placed inside, we can easily symmetry
the table by the diagonal which passes through top right and bottom
left cell and then our solution works again.

2. For the second part look at the figure below: Assume we have placed
some trucks in the gray parts. Number of these trucks are equal to
(2k + 1) + k = 3k + 1.

Figure 4: Final position of trucks in case t = 3k + 1.

In this figure, There is always a truck which is placed in cell O no
matters how we move these trucks. According to the first proof, the
number of trucks won’t exceed 3k + 1 so we can not add any truck into
this table.

�
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Problem 3.
There is an ant on every vertex of a unit cube. At the time zero, ants start
to move across the edges with the velocity of one unit per minute. If an ant
reaches a vertex, it alternatively turns right and left (for the first time it will
turn in a random direction). If two or more ants meet anywhere on the cube,
they die! We know an ant survives after three minutes. Prove that there
exists an ant that never dies!

Proposed by Morteza Saghafian
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.
If an ant does not meet any other ant, then its path would be a hexagon
which is symmetric with respect to the center of the cube. So if two ants
meet after three minutes, they should have met three minutes before at the
opposite points.

Figure 5: A hexagonal path for ant when it alternatively turns right and left

�
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Problem 4.
The path number of a graph is the minimum number of paths we need to
partition the vertices of a graph. Given a connected graph with the inde-
pendence number k > 1, what is the maximum possible value for the path
number in this graph? Find the answer in terms of k.
The independence number of a graph G is the maximum possible number k,
such that there exist k pairwise non-adjacent vertices in G.

Proposed by Afrouz Jabal Ameli and Amir Hossein Gorzi
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.
We argue that the answer is k − 1.

First observe that a star with k leaves, is a connected graph with indepen-
dence number k and path number k − 1.

Now assume that there exists a graph G, such that the path number of G is
at least k. Consider the minimum number of paths, t ≥ k, that partition the
vertices of G.

If we consider one endpoint per each of these paths, it forms an independent
set of vertices, which implies t ≤ k. Therefore we can assume that t = k.

Now, in each of these paths, of length at least 1, such as P , the two endpoints
of P must be adjacent in G, otherwise there exists an independent set of size
at least k + 1 in G. Now, since G is connected there must be an edge e in G
between two of these paths, namely P1 and P2. Since for each i ∈ {1, 2}, Pi

is either a path of length zero or the two endpoints of Pi are adjacent in G,
then using the edge e, one can merge these two paths into one path; This is
a contradiction since t is the path number of G.

�
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Problem 5.

By a tile we mean a polyomino (i.e. a finite edge-connected set of cells in
the infinite grid). There are many ways to place a tile in the infinite table
(rotation is allowed but we cannot flip the tile). We call a tile T special if
we can place a permutation of the positive integers on all cells of the infinite
table in such a way that each number would be maximum between all the
numbers that tile covers in at most one placement of the tile.

1. Prove that each square is a special tile.

2. Prove that each non-square rectangle is not a special tile.

3. Prove that tile T is special if and only if it looks the same after 90◦

rotation.

Proposed by Morteza Saghafian
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.

1. If we place the numbers in the increasing order on a spiral path as in
the figure below, then the number on every cell is greater than at most
two of its (edge) neighbors. So the number on every cell can be the
maximum number on at most one square of the given size.

Figure 6: All positive integers placed in the increasing order along a spiral
path
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2. Let the tile T be a a× b rectangle with a 6= b. Consider a large square
S with side length N , take all copies of T completely inside S and mark
the maximum cell of each of them. The number of copies of T in S is
2 · (N −a+ 1) · (N − b+ 1), since T can also rotate. So the total number
of marked cells in S is 2 ·(N−a+1) ·(N−b+1), which for large enough
N is larger than N2. So there exists a cell in S which is marked at least
twice, contradiction.

3. If the tile T looks the same after 90◦ rotation, then the same numbering
as part 1 works. Because the numbers on a cell has one of the following
cases:

• Case 1. It is smaller than all numbers on all the bottom rows and
also in its row it is smaller than all numbers left to it (e.g. number
6 in the figure).

• Case 2. It is smaller than all numbers on all the right columns
and also in its column it is smaller than all numbers below it (e.g.
number 14 in the figure).

• Case 3. It is smaller than all numbers on all the upper rows and
also in its row it is smaller than all numbers right to it (e.g. number
12 in the figure).

• Case 4. It is smaller than all numbers on all the left columns
and also in its column it is smaller than all numbers above it (e.g.
number 9 in the figure).
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We assume the first case, the other cases will follow similarly. Suppose
that the number on cell c has the property of the first case, and it is the
maximum number among all cells of a copy of tile T . Then it has to be
the bottom-most cell in this copy of T , and also among the bottom-most
cells of this copy, it has to be the leftmost cell. since T looks the same
after 90◦ rotation, we can place a copy of T uniquely in the grid so that
cell c is the bottom-most cell and leftmost cell among the bottom-most
cells of it.

If the tile T does not look the same after 90◦ rotation, then the number
of copies of T completely inside a large square S of side length N is
quadratic in terms of N , with leading coefficient more than 1 (actually
2 or 4). So similar approach to part 2 works.

�

Remark. Note that this solution works even for a finite (not necessarily
connected) subset of cells in the grid.
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Problem 6.

Let P be a convex polygon and T be a triangle with vertices among the
vertices of P. By removing T from P, we end up with 0, 1, 2, or 3 smaller
polygons (possibly with shared vertices) which we call the effect of T. A
triangulation of P is a way of dissecting it into some triangles using some
non-intersecting diagonals. We call a triangulation of P beautiful, if for each
of its triangles, the effect of this triangle contains exactly one polygon with
an odd number of vertices. Prove that a triangulation of P is beautiful if and
only if we can remove some of its diagonals and end up with all regions as
quadrilaterals.

Proposed by Abolfazl Asadi
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.

We define a quadrilateration of P, a way of dissecting it into some quadlirat-
eral region using some non-intersecting diagonals.

First, We show that if the effects of some triangle T in triangulation has at
least two odd polygons, triangulation cannot construct quadrilateration by
removing some of the diagonals. Each odd-vertex effect of T must match
exactly one of its triangles with T to construct quadrilateration. Therefore,
T must be matched with two triangles in the quadrilateration, which is a
contradiction.

Now, We prove the other side. We present two solutions for this part:

Solution 1: Proof by induction. We can assume that n (the number of ver-
tices of P ) is even (if n is odd, P does not have any quadrilateration). For
the basis of induction, n = 4 is trivial. Let the statement be true for k < n.
Now, we show that the statement is also true for k = n. Let A be a beautiful
triangulation of polygon and T be a triangle of A with two sides coinciding
on the sides of the polygon (it’s easy to show that every triangulation has
such a triangle). Let T ′ be the adjacent triangle of T . After removing T and
T ′ from A, the remaining part has one or two polygons. These polygons have
even sides, because T ′ has another odd effect (T ). In each of these polygons,
we have a quadrilateration according to the induction hypothesis (T , T ′ and
other part contain even number of triangles and don’t interfere with the in-
duction hypothesis).

�
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Solution 2: Proof by one-to-one correspondence. For every triangle T in
triangulation, its correspondence triangle (f(T )) determines uniquely (the
adjacent triangle in odd effect of T ). That’s enough to show that f(f(T )) = T
for every triangle T in triangulation. This is also trivial, because for an
arbitrary triangle T in triangulation, T is in the odd effect of f(T ).

�
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Problem 7.

In a group of 2021 people, 1400 of them are saboteurs. Sherlock wants to
find one saboteur. There are some missions that each needs exactly 3 people
to be done. A mission fails if at least one of the three participants in that
mission is a saboteur! In each round, Sherlock chooses 3 people, sends them
to a mission and sees whether it fails or not. What is the minimum number
of rounds he needs to accomplish his goal?

Proposed by Afrouz Jabal Ameli
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution.

The answer is 2346.

Take a person u. Partition the other people into 456 groups of size 3 and
163 groups of size 4. Let these groups be A1, . . . , A619. We do the following
algorithm. For each 1 ≤ i ≤ 619, For each pair of members of Ai, such as
v, w we send v, w and u to a mission until a mission is done successfully or
we do all the missions.

If all the 2346 missions fail one can argue that u is a saboteur, otherwise we
have at least 456× 2 + 163× 3 = 1401 saboteurs which is a contradiction.

So assume that the j-th mission {u, v, w} is the first successful mission. Note
that j is at most 6× 163 + 3× 456 = 2346. If j = 1, then clearly we can take
the rest of the people one by one and send them to a mission with u and v,
until a mission fails and hence we find a saboteur in less than 2021 − 1400
steps. If j > 1, then if one of the previous missions contained v or similarly
w, then we already can identify a saboteur in j steps. Otherwise j < 2346−1.
Now by one additional mission, we identify a saboteur.

To show that at least 2346 missions are necessary, assume that it is possible
to do this with at most 2345 steps. Now consider the case in which all the
missions fail and we decide to present a specific person (u) as a saboteur.
Consider all the pairs of people A1, . . . Ar that have been sent to a mission
with u. Also consider all the sets of size 3 formed by the people who have
been sent to a mission together that u did not participate. Let these sets be
B1, . . . , Bk. Clearly k+r = 2345. Now it suffices to show that there is a set S
of 1400 people other than u, such that S intersects A1, . . . , Ar, B1, B2, . . . , Bk,
which is a contradiction!
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To show this let G = (V,E) be the graph, such that V is the set of all the
people other than u and E be the set of pairs formed by each Ai and exactly
one pair from each Bi. Therefore |V | = 2020 and |E| = 2345. We show that
the minimum vertex cover of this graph is of size at most 1400. To prove
this we present an algorithm that obtains a vertex cover of size at most 1400
in G. At each step we take the vertex with the maximum degree, add it to
solution, and remove it from the graph, until it has no more edges.

Let f(m,n) be the size of the vertex cover obtained by this algorithm in a
graph with n vertices and m edges. Then we have

f(m,n) ≤ f(m−∆, n− 1) + 1 ≤ f(m− d2m
n
e, n− 1).

Thus f(2345, 2020) ≤ 1400.
�
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